Stability of plant immune-receptor resistance proteins is controlled by SKP1-CULLIN1-F-box (SCF)-mediated protein degradation.
نویسندگان
چکیده
The nucleotide-binding domain and leucine-rich repeats containing proteins (NLRs) serve as immune receptors in both plants and animals. Overaccumulation of NLRs often leads to autoimmune responses, suggesting that the levels of these immune receptors must be tightly controlled. However, the mechanism by which NLR protein levels are regulated is unknown. Here we report that the F-box protein CPR1 controls the stability of plant NLR resistance proteins. Loss-of-function mutations in CPR1 lead to higher accumulation of the NLR proteins SNC1 and RPS2, as well as autoactivation of immune responses. The autoimmune responses in cpr1 mutant plants can be largely suppressed by knocking out SNC1. Furthermore, CPR1 interacts with SNC1 and RPS2 in vivo, and overexpressing CPR1 results in reduced accumulation of SNC1 and RPS2, as well as suppression of immunity mediated by these two NLR proteins. Our data suggest that SKP1-CULLIN1-F-box (SCF) complex-mediated stability control of plant NLR proteins plays an important role in regulating their protein levels and preventing autoimmunity.
منابع مشابه
The Arabidopsis F-box protein CORONATINE INSENSITIVE1 is stabilized by SCFCOI1 and degraded via the 26S proteasome pathway.
Jasmonate regulates critical aspects of plant development and defense. The F-box protein CORONATINE INSENSITIVE1 (COI1) functions as a jasmonate receptor and forms Skp1/Cullin1/F-box protein COI1 (SCF(COI1)) complexes with Arabidopsis thaliana Cullin1 and Arabidopsis Skp1-like1 (ASK1) to recruit its substrate jasmonate ZIM-domain proteins for ubiquitination and degradation. Here, we reveal a me...
متن کاملSkp1 Independent Function of Cdc53/Cul1 in F-box Protein Homeostasis
Abundance of substrate receptor subunits of Cullin-RING ubiquitin ligases (CRLs) is tightly controlled to maintain the full repertoire of CRLs. Unbalanced levels can lead to sequestration of CRL core components by a few overabundant substrate receptors. Numerous diseases, including cancer, have been associated with misregulation of substrate receptor components, particularly for the largest cla...
متن کاملFBXL20-mediated Vps34 ubiquitination as a p53 controlled checkpoint in regulating autophagy and receptor degradation.
Vacuolar protein-sorting 34 (Vps34), the catalytic subunit in the class III PtdIns3 (phosphatidylinositol 3) kinase complexes, mediates the production of PtdIns3P, a key intracellular lipid involved in regulating autophagy and receptor degradation. However, the signal transduction pathways by which extracellular signals regulate Vps34 complexes and the downstream cellular mechanisms are not wel...
متن کاملF-box protein substrate recognition
Ubiquitin E3 ligases represent an increasingly diverse group of proteins whose precise biologic role still remains enigmatic. Of the SCF (Skp1-Cullin1-F-box) E3 ligase family, for example, only very few subunits from over 60 family members are well-characterized. The SCF apparatus contains a multi-subunit catalytic core consisting of Skp1, Cullin1 and the E2 ubiquitin-conjugating (Ubc) enzyme a...
متن کاملAn E4 ligase facilitates polyubiquitination of plant immune receptor resistance proteins in Arabidopsis.
Proteins with nucleotide binding and leucine-rich repeat domains (NLRs) serve as immune receptors in animals and plants that recognize pathogens and activate downstream defense responses. As high accumulation of NLRs can result in unwarranted autoimmune responses, their cellular concentrations must be tightly regulated. However, the molecular mechanisms of this process are poorly detailed. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 35 شماره
صفحات -
تاریخ انتشار 2011